Hydrogen Production by a Chlamydomonas reinhardtii Strain with Inducible Expression of Photosystem II
نویسندگان
چکیده
Chlamydomonas reinhardtii cy6Nac2.49 is a genetically modified algal strain that activates photosynthesis in a cyclical manner, so that photosynthesis is not active constitutively in the presence of oxygen, but is turned on only in response to a metabolic trigger (anaerobiosis). Here, we further investigated hydrogen production by this strain comparing it with the parental wild-type strain under photoheterotrophic conditions in regular tris-acetate-phosphate (TAP) medium with a 10-h:14-h light/dark regime. Unlike the wild-type, whose level of H₂ production remained low during illumination, H₂ production in the mutant strain increased gradually with each subsequent light period, and by the final light period was significantly higher than the wild-type. The relatively low Photosystem II (PSII) activity of the mutant culture was shown by low fluorescence yield both in the dark (Fv/Fm) and in the light (δF/Fm') periods. Measurement of oxygen evolution confirmed the low photosynthetic activity of the mutant cells, which gradually accumulated O₂ to a lesser extent than the wild-type, thus allowing the mutant strain to maintain hydrogenase activity over a longer time period and to gradually accumulate H₂ during periods of illumination. Therefore, controllable expression of PSII can be used to increase hydrogen production under nutrient replete conditions, thus avoiding many of the limitations associated with nutrient deprivation approaches sometimes used to promote hydrogen production.
منابع مشابه
Improved photobio-H2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii
Background Sulfur-deprived cultivation of Chlamydomonas reinhardtii, referred as "two-stage culture" transferring the cells from regular algal medium to sulfur-deplete one, has been extensively studied to improve photobio-H2 production in this green microalga. During sulfur-deprivation treatment, the synthesis of a key component of photosystem II complex, D1 protein, was inhibited and improved ...
متن کاملLight-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii.
Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (P...
متن کاملTranscriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followe...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملKnock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii
The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plant...
متن کامل